Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Methyl

Formula: CH3 (g)
CAS RN: 2229-07-4
ATcT ID: 2229-07-4*0
SMILES: [CH3]
InChI: InChI=1S/CH3/h1H3
InChIKey: WCYWZMWISLQXQU-UHFFFAOYSA-N
Hills Formula: C1H3

2D Image:

[CH3]
Aliases: CH3; Methyl; Methyl radical
Relative Molecular Mass: 15.03452 ± 0.00083

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
149.874146.473± 0.050kJ/mol

3D Image of CH3 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3 (g)

The 20 contributors listed below account only for 68.5% of the provenance of ΔfH° of CH3 (g).
A total of 265 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
30.62279.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
7.22294.2 CH3 (g) → [CH3]+ (g) ΔrH°(0 K) = 79369.9 ± 3 cm-1Schulenburg 2006, note CH3
7.22294.1 CH3 (g) → [CH3]+ (g) ΔrH°(0 K) = 79370.4 ± 3 cm-1Schulenburg 2006, note CH3
5.52277.7 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.578 ± 0.078 kJ/molSchley 2010
4.5121.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
4.42301.1 CH4 (g) → [CH3]+ (g) H (g) ΔrH°(0 K) = 14.32271 ± 0.00013 eVChang 2017
1.32294.4 CH3 (g) → [CH3]+ (g) ΔrH°(0 K) = 79363 ± 3 (×2.278) cm-1Blush 1993, note CH3
0.82134.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
0.72172.11 CO (g) → C (g) O (g) ΔrH°(0 K) = 1071.92 ± 0.10 (×1.215) kJ/molThorpe 2021
0.72277.4 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/molDale 2002
0.72291.12 CH3 (g) → C (g) + 3 H (g) ΔrH°(0 K) = 289.11 ± 0.10 kcal/molFeller 2016, note unc2
0.62295.12 CH3 (g) → [CH3]+ (g) ΔrH°(0 K) = 226.946 ± 0.029 kcal/molFeller 2017a
0.62333.1 CH3 (g) → CH2 (g, triplet) H (g) ΔrH°(0 K) = 109.26 ± 0.08 kcal/molFeller 2016, est unc, note unc2
0.52182.2 CO (g) → C+ (g) O (g) ΔrH°(0 K) = 22.3713 ± 0.0015 eVNg 2007
0.42277.6 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.44 ± 0.26 kJ/molGOMB Ref Calorimeter, Alexandrov 2002
0.42277.8 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.482 ± 0.260 kJ/molHaloua 2015
0.42190.9 C (graphite) CO2 (g) → 2 CO (g) ΔrG°(1165 K) = -33.545 ± 0.058 kJ/molSmith 1946, note COf, 3rd Law
0.42293.4 CH3 (g) → C (g) + 3 H (g) ΔrH°(0 K) = 1209.50 ± 0.56 kJ/molHarding 2008
0.32134.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
0.32134.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
88.7 Methylium[CH3]+ (g)[CH3+]1099.3471095.403± 0.045kJ/mol15.03397 ±
0.00083
14531-53-4*0
85.6 MethaneCH4 (g)C-66.549-74.518± 0.044kJ/mol16.04246 ±
0.00085
74-82-8*0
66.4 Methane cation[CH4]+ (g)[CH4+]1150.6801144.298± 0.058kJ/mol16.04191 ±
0.00085
20741-88-2*0
38.9 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.995± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
38.8 WaterH2O (cr, l, eq.press.)O-286.274-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*499
38.8 WaterH2O (l, eq.press.)O-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*589
38.8 WaterH2O (l)O-285.800± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*590
38.8 Oxonium[H3O]+ (aq)[OH3+]-285.800± 0.022kJ/mol19.02267 ±
0.00037
13968-08-6*800
38.8 WaterH2O (cr,l)O-286.272-285.800± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*500
38.8 WaterH2O (g)O-238.902-241.805± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*0

Most Influential reactions involving CH3 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.6552296.1 [CH3]- (g) → CH3 (g) ΔrH°(0 K) = 0.093 ± 0.003 eVOliveira 2015
0.5418183.1 Si(CH3)4 (g) → [Si(CH3)3]+ (g) CH3 (g) ΔrH°(0 K) = 10.28 ± 0.01 eVSzepes 1984
0.4816941.1 CH3C(O)CH3 (g) → [CH3CO]+ (g) CH3 (g) ΔrH°(0 K) = 10.532 ± 0.006 eVBodi 2015
0.4598431.1 CH3CH2NH2 (g) → [CH2NH2]+ (g) CH3 (g) ΔrH°(0 K) = 9.754 ± 0.008 eVBodi 2006a
0.4112294.1 CH3 (g) → [CH3]+ (g) ΔrH°(0 K) = 79370.4 ± 3 cm-1Schulenburg 2006, note CH3
0.4112294.2 CH3 (g) → [CH3]+ (g) ΔrH°(0 K) = 79369.9 ± 3 cm-1Schulenburg 2006, note CH3
0.2558175.1 SiI(CH3)3 (g) CH3 (g) → Si(CH3)4 (g) I (g) ΔrH°(0 K) = -0.41 ± 0.02 eVSzepes 1984
0.2274343.6 CH3OO (g) → CH3 (g) O2 (g) ΔrH°(0 K) = 30.40 ± 0.17 kcal/molNguyen 2014a
0.2198174.1 SiBr(CH3)3 (g) CH3 (g) → Si(CH3)4 (g) Br (g) ΔrH°(0 K) = 0.42 ± 0.02 eVSzepes 1984
0.2097120.5 (CH2C(O)OH)2 (g) + 2 CH3 (g) → 2 CH2C(O)OH (g, syn) CH3CH3 (g) ΔrH°(0 K) = -4.89 ± 0.9 kcal/molRuscic W1RO
0.1697120.4 (CH2C(O)OH)2 (g) + 2 CH3 (g) → 2 CH2C(O)OH (g, syn) CH3CH3 (g) ΔrH°(0 K) = -4.68 ± 1.0 kcal/molRuscic CBS-n
0.1697120.2 (CH2C(O)OH)2 (g) + 2 CH3 (g) → 2 CH2C(O)OH (g, syn) CH3CH3 (g) ΔrH°(0 K) = -5.31 ± 1.0 kcal/molRuscic G4
0.1643587.1 C(CH3)4 (g) → [(CH3)3C]+ (g) CH3 (g) ΔrH°(0 K) = 10.564 ± 0.025 eVStevens 2010b
0.1562585.8 CH2NH2 (g) CH4 (g) → CH3NH2 (g) CH3 (g) ΔrH°(0 K) = 12.19 ± 0.20 kcal/molKarton 2011
0.1293710.7 CH2CHCCH2 (g) CH4 (g) → CH2CHCHCH2 (g) CH3 (g) ΔrH°(0 K) = 14.19 ± 2.00 kJ/molKlippenstein 2017
0.1255719.4 CH2Cl (g) CHCl2 (g) → CCl3 (g) CH3 (g) ΔrH°(0 K) = 3.37 ± 0.9 kcal/molRuscic W1RO
0.1183710.6 CH2CHCCH2 (g) CH4 (g) → CH2CHCHCH2 (g) CH3 (g) ΔrH°(0 K) = 3.22 ± 0.50 kcal/molWheeler 2004, est unc
0.1126971.6 CH3C(O)CH2 (g) CH4 (g) → CH3C(O)CH3 (g) CH3 (g) ΔrH°(0 K) = 34.28 ± 2.00 kJ/molKlippenstein 2017
0.1117923.4 HCCCH2Cl (g) CH3 (g) → CH2CCH (g) CH3Cl (g) ΔrH°(0 K) = -13.58 ± 0.9 kcal/molRuscic W1RO
0.1087917.2 C6H5OO (g) CH3 (g) → C6H5 (g) CH3OO (g) ΔrH°(0 K) = 16.66 ± 1.0 kcal/molRuscic G4


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.