Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Carbon hexacation

Formula: [C]+6 (g)
CAS RN: 16249-02-8
ATcT ID: 16249-02-8*0
SMILES: [C+6]
InChI: InChI=1S/C/q+6
InChIKey: HKTRHIPIHLWWPR-UHFFFAOYSA-N
Hills Formula: C1+6

2D Image:

[C+6]
Aliases: [C]+6; Carbon hexacation; Carbon ion (6+); Carbon atom hexacation; Carbon atom ion (6+); Atomic carbon hexacation; Atomic carbon ion (6+); Monocarbon hexacation; Monocarbon ion (6+); Moncarbon hexacation; Moncarbon ion (6+)
Relative Molecular Mass: 12.00741 ± 0.00080

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
100101.750100106.897± 0.051kJ/mol

3D Image of [C]+6 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [C]+6 (g)

The 20 contributors listed below account only for 59.0% of the provenance of ΔfH° of [C]+6 (g).
A total of 625 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
22.12119.1 [C]+2 (g) → [C]+3 (g) ΔrH°(0 K) = 386241.0 ± 2 cm-1NIST Atomic Web, Olme 1970
12.42120.1 [C]+3 (g) → [C]+4 (g) ΔrH°(0 K) = 520175.3 ± 1.5 cm-1Tunklev 1997, NIST Atomic Web
5.12172.11 CO (g) → C (g) O (g) ΔrH°(0 K) = 1071.92 ± 0.10 (×1.215) kJ/molThorpe 2021
3.52182.2 CO (g) → C+ (g) O (g) ΔrH°(0 K) = 22.3713 ± 0.0015 eVNg 2007
3.52279.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
1.92190.9 C (graphite) CO2 (g) → 2 CO (g) ΔrG°(1165 K) = -33.545 ± 0.058 kJ/molSmith 1946, note COf, 3rd Law
1.8121.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.52134.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
0.72169.5 CO (g) → C (g) O (g) ΔrH°(0 K) = 89632 ± 27 cm-1Ruscic 2003
0.76498.8 C6H6 (g) → 6 C (g) + 6 H (g) ΔrH°(0 K) = 5463.0 ± 1.8 kJ/molHarding 2011
0.62167.3 CO (g) → C (g) O (g) ΔrH°(0 K) = 89620 ± 29 cm-1Douglas 1955, Schmid 1935, note COj
0.62134.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
0.62134.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
0.62432.1 CH2CH2 (g) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -1411.18 ± 0.30 kJ/molRossini 1937
0.58579.1 C60 (cr,l) + 60 O2 (g) → 60 CO2 (g) ΔrH°(298.15 K) = -25965 ± 20 kJ/molKolesov 1996, est unc
0.58552.5 C6H4(C2H2(CC(C4H4))) (g) → 14 C (g) + 10 H (g) ΔrH°(0 K) = 11890.6 ± 5.2 kJ/molKarton 2021
0.56498.5 C6H6 (g) → 6 C (g) + 6 H (g) ΔrH°(0 K) = 1305.43 ± 0.50 kcal/molKarton 2017
0.58548.5 C6H4(CH(CC(C4H4)CH)) (g) → 14 C (g) + 10 H (g) ΔrH°(0 K) = 11866.6 ± 5.2 kJ/molKarton 2021, Karton 2012a
0.42134.11 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/molProsen 1944a, Cox 1970, NBS TN270, NBS Tables 1989
0.38570.5 C6H5C6H5 (g) → 12 C (g) + 10 H (g) ΔrH°(0 K) = 10492.4 ± 5.2 kJ/molKarton 2021

Top 10 species with enthalpies of formation correlated to the ΔfH° of [C]+6 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 Carbon pentacation[C]+5 (g)[C+5]52824.59652829.742± 0.051kJ/mol12.00796 ±
0.00080
14280-11-6*0
99.8 Carbon tetracation[C]+4 (g)[C+4]14993.61214998.759± 0.051kJ/mol12.00851 ±
0.00080
16092-62-9*0
93.4 Carbon trication[C]+3 (g)[C+3]8770.9348776.080± 0.047kJ/mol12.00905 ±
0.00080
14067-06-2*0
80.6 Carbon dication[C]+2 (g)[C++]4150.4664155.612± 0.041kJ/mol12.00960 ±
0.00080
16092-61-8*0
80.6 Carbon cationC+ (g)[C+]1797.8491803.447± 0.041kJ/mol12.01015 ±
0.00080
14067-05-1*0
80.5 CarbonC (g, singlet)[C]833.327838.474± 0.041kJ/mol12.01070 ±
0.00080
7440-44-0*2
80.5 CarbonC (g, quintuplet)[C]1114.9591120.105± 0.041kJ/mol12.01070 ±
0.00080
7440-44-0*3
80.5 CarbonC (g, triplet)[C]711.396716.881± 0.041kJ/mol12.01070 ±
0.00080
7440-44-0*1
80.5 CarbonC (g)[C]711.396716.881± 0.041kJ/mol12.01070 ±
0.00080
7440-44-0*0
80.2 Carbon anionC- (g)[C-]589.620594.766± 0.041kJ/mol12.01125 ±
0.00080
14337-00-9*0

Most Influential reactions involving [C]+6 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7162123.2 [C]+5 (g) → [C]+6 (g) ΔrH°(0 K) = 3952061.45 ± 0.10 cm-1Erickson 1977, note std dev
0.2762123.4 [C]+5 (g) → [C]+6 (g) ΔrH°(0 K) = 3952061.67 ± 0.10 (×1.61) cm-1Johnson 1985, NIST Atomic Web, note std dev
0.0072123.3 [C]+5 (g) → [C]+6 (g) ΔrH°(0 K) = 3952061.4 ± 1 cm-1Garcia 1965
0.0002123.1 [C]+5 (g) → [C]+6 (g) ΔrH°(0 K) = 3951950 ± 50 (×2.278) cm-1NSRDS-NBS 35, est unc
0.0002124.5 [C]+4 (g) → [C]+6 (g) ΔrH°(0 K) = 882.037 ± 0.040 (×1.189) eVRuscic W1RO
0.0002124.4 [C]+4 (g) → [C]+6 (g) ΔrH°(0 K) = 881.762 ± 0.075 (×4.362) eVRuscic CBS-n
0.0002124.1 [C]+4 (g) → [C]+6 (g) ΔrH°(0 K) = 881.78 ± 0.35 eVBarmaki 2019, Laulan 2018, est unc
0.0002124.2 [C]+4 (g) → [C]+6 (g) ΔrH°(0 K) = 881.529 ± 0.073 (×7.661) eVRuscic G4
0.0002123.5 [C]+5 (g) → [C]+6 (g) ΔrH°(0 K) = 489.81 ± 0.25 eVLaulan 2018, Barmaki 2019, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.