Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Naphthalene

Formula: C6H4(C4H4) (g)
CAS RN: 91-20-3
ATcT ID: 91-20-3*0
SMILES: c1ccc2ccccc2c1
InChI: InChI=1S/C10H8/c1-2-6-10-8-4-3-7-9(10)5-1/h1-8H
InChIKey: UFWIBTONFRDIAS-UHFFFAOYSA-N
Hills Formula: C10H8

2D Image:

c1ccc2ccccc2c1
Aliases: C6H4(C4H4); Naphthalene; Albocarbon; Dezodorator; Moth flakes; NSC 37565; Naphthene; Tar camphor; White tar
Relative Molecular Mass: 128.1705 ± 0.0080

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
171.04147.56± 0.56kJ/mol

3D Image of C6H4(C4H4) (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of C6H4(C4H4) (g)

The 20 contributors listed below account only for 67.5% of the provenance of ΔfH° of C6H4(C4H4) (g).
A total of 55 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
11.18521.16 C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -1231.34 ± 0.36 kcal/molKeffler 1927, as quoted by NIST WebBook, est unc
4.88521.15 C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -1231.05 ± 0.36 (×1.509) kcal/molKeffler 1931, Cox 1970
4.38554.5 C6H4(C2H2(CC(C4H4))) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = 9.7 ± 3.6 kJ/molKarton 2013, est unc
4.08554.4 C6H4(C2H2(CC(C4H4))) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = 2.83 ± 0.90 kcal/molRuscic CBS-n
4.08554.2 C6H4(C2H2(CC(C4H4))) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = 2.09 ± 0.90 kcal/molRuscic G4
4.08554.1 C6H4(C2H2(CC(C4H4))) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = 2.05 ± 0.90 kcal/molRuscic G3X
3.48549.4 C6H4(CH(CC(C4H4)CH)) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = -2.87 ± 0.90 kcal/molRuscic CBS-n
3.48549.2 C6H4(CH(CC(C4H4)CH)) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = -3.55 ± 0.90 kcal/molRuscic G4
3.48549.1 C6H4(CH(CC(C4H4)CH)) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = -3.63 ± 0.90 kcal/molRuscic G3X
3.28554.3 C6H4(C2H2(CC(C4H4))) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = 2.73 ± 1.0 kcal/molRuscic CBS-n
2.88557.1 C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -7048.5 ± 0.9 kJ/molNagano 2002
2.78549.3 C6H4(CH(CC(C4H4)CH)) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = -2.96 ± 1.0 kcal/molRuscic CBS-n
2.68554.6 C6H4(C2H2(CC(C4H4))) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = 9.5 ± 4.6 kJ/molKarton 2021
2.58521.1 C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -1232.34 ± 0.22 (×3.437) kcal/molColeman 1966
2.28549.5 C6H4(CH(CC(C4H4)CH)) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = -14.5 ± 4.6 kJ/molKarton 2021, Karton 2012a
2.18521.6 C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -5156.3 ± 1.2 (×2.828) kJ/molAmmar 1977, as quoted by NIST WebBook, Roux 2008
1.92134.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
1.68521.7 C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -5156.89 ± 1.60 (×2.484) kJ/molSperos 1960
1.48550.1 C6H4(CH(CC(C4H4)CH)) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -7062.6 ± 2.1 kJ/molRibeiro da Silva 2007
1.28558.1 C6H4(C2H2(CC(C4H4))) (cr,l) → C6H4(C2H2(CC(C4H4))) (g) ΔrH°(323.31 K) = 91.6 ± 0.8 kJ/molRibeiro da Silva 2006, note unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H4(C4H4) (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.0 Naphthalene cation[C6H4(C4H4)]+ (g)c1c(cc2ccccc2c1)[H+]956.80933.73± 0.57kJ/mol128.1700 ±
0.0080
34512-27-1*0
97.8 NaphthaleneC6H4(C4H4) (cr,l)c1ccc2ccccc2c194.5874.99± 0.57kJ/mol128.1705 ±
0.0080
91-20-3*500
48.8 1-Naphthyl anion[C6H4(CCHCHCH)]- (g)c12ccccc1C=CC=[C-]2283.4264.0± 1.2kJ/mol127.1631 ±
0.0080
125254-29-7*0
45.9 2-Naphthyl anion[C6H4(CHCCHCH)]- (g)c12ccccc1C=C[C-]=C2288.6269.2± 1.3kJ/mol127.1631 ±
0.0080
88760-89-8*0
44.7 1-NaphthalenylC6H4(CCHCHCH) (g)c12ccccc1C=CC=[C]2417.9398.3± 1.3kJ/mol127.1626 ±
0.0080
2510-51-2*0
42.8 2-NaphthalenylC6H4(CHCCHCH) (g)c12ccccc1C=C[C]=C2416.6397.0± 1.3kJ/mol127.1626 ±
0.0080
10237-50-0*0
39.5 PhenanthreneC6H4(C2H2(CC(C4H4))) (g)c1ccc2c(c1)ccc3c2cccc3231.86203.04± 0.77kJ/mol178.2292 ±
0.0112
85-01-8*0
37.9 AnthraceneC6H4(CH(CC(C4H4)CH)) (g)c1ccc2cc3ccccc3cc2c1255.81226.79± 0.95kJ/mol178.2292 ±
0.0112
120-12-7*0
34.9 AnthraceneC6H4(CH(CC(C4H4)CH)) (cr,l)c1ccc2cc3ccccc3cc2c1150.45124.64± 0.90kJ/mol178.2292 ±
0.0112
120-12-7*500
33.2 PhenanthreneC6H4(C2H2(CC(C4H4))) (cr,l)c1ccc2c(c1)ccc3c2cccc3136.21110.93± 0.65kJ/mol178.2292 ±
0.0112
85-01-8*500

Most Influential reactions involving C6H4(C4H4) (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8788513.1 C6H4(C4H4) (g) → [C6H4(C4H4)]+ (g) ΔrH°(0 K) = 65687 ± 7 cm-1Cockett 1993
0.3738514.4 [C6H4(C4H4)]- (g) → C6H4(C4H4) (g) ΔrH°(0 K) = -0.20 ± 0.05 eVSchiedt 2000
0.1768522.7 C6H4(C4H4) (cr,l) → C6H4(C4H4) (g) ΔrH°(298.15 K) = 72.51 ± 0.28 kJ/molde Kruif 1981, Roux 2008
0.1538522.10 C6H4(C4H4) (cr,l) → C6H4(C4H4) (g) ΔrH°(298.15 K) = 72.5 ± 0.3 kJ/molLee 1993, Roux 2008
0.1538522.1 C6H4(C4H4) (cr,l) → C6H4(C4H4) (g) ΔrH°(298.15 K) = 72.6 ± 0.3 kJ/molRoux 2008
0.1298514.5 [C6H4(C4H4)]- (g) → C6H4(C4H4) (g) ΔrH°(0 K) = -0.184 ± 0.085 eVRuscic G3X
0.1128513.2 C6H4(C4H4) (g) → [C6H4(C4H4)]+ (g) ΔrH°(0 K) = 65665 ± 10 (×1.957) cm-1Duncan 1981
0.1108514.7 [C6H4(C4H4)]- (g) → C6H4(C4H4) (g) ΔrH°(0 K) = -0.127 ± 0.092 eVRuscic CBS-n
0.0968539.2 C6H4(C4H4) (g) C6H5 (g) → C6H6 (g) C6H4(CHCCHCH) (g) ΔrH°(0 K) = -2.14 ± 0.90 kcal/molRuscic G4
0.0968539.1 C6H4(C4H4) (g) C6H5 (g) → C6H6 (g) C6H4(CHCCHCH) (g) ΔrH°(0 K) = -1.32 ± 0.90 kcal/molRuscic G3X
0.0938514.3 [C6H4(C4H4)]- (g) → C6H4(C4H4) (g) ΔrH°(0 K) = -0.18 ± 0.10 eVSong 2002b, est unc
0.0938514.1 [C6H4(C4H4)]- (g) → C6H4(C4H4) (g) ΔrH°(0 K) = -0.20 ± 0.10 eVLyapustina 2000, est unc
0.0938514.2 [C6H4(C4H4)]- (g) → C6H4(C4H4) (g) ΔrH°(0 K) = -0.19 ± 0.10 eVBurrow 1987
0.0918549.4 C6H4(CH(CC(C4H4)CH)) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = -2.87 ± 0.90 kcal/molRuscic CBS-n
0.0918549.1 C6H4(CH(CC(C4H4)CH)) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = -3.63 ± 0.90 kcal/molRuscic G3X
0.0918549.2 C6H4(CH(CC(C4H4)CH)) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = -3.55 ± 0.90 kcal/molRuscic G4
0.0888540.2 C6H4(C4H4) (g) C6H5 (g) → C6H6 (g) C6H4(CCHCHCH) (g) ΔrH°(0 K) = -1.82 ± 0.90 kcal/molRuscic G4
0.0888540.1 C6H4(C4H4) (g) C6H5 (g) → C6H6 (g) C6H4(CCHCHCH) (g) ΔrH°(0 K) = -1.01 ± 0.90 kcal/molRuscic G3X
0.0868554.5 C6H4(C2H2(CC(C4H4))) (g) C6H6 (g) → 2 C6H4(C4H4) (g) ΔrH°(0 K) = 9.7 ± 3.6 kJ/molKarton 2013, est unc
0.0868522.4 C6H4(C4H4) (cr,l) → C6H4(C4H4) (g) ΔrH°(298.15 K) = 72.7 ± 0.4 kJ/molChirico 1993, Roux 2008


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.