Selected ATcT [1, 2] enthalpy of formation based on version 1.122 of the Thermochemical Network [3]

This version of ATcT results was partially described in Ruscic et al. [4], and was also used for the initial development of high-accuracy ANLn composite electronic structure methods [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Aminium[NH3]+ (g)[NH3+]944.275937.320± 0.030kJ/mol17.03001 ±
0.00022
19496-55-0*0

Representative Geometry of [NH3]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [NH3]+ (g)

The 8 contributors listed below account for 90.0% of the provenance of ΔfH° of [NH3]+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
48.81149.1 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(298.15 K) = -10.885 ± 0.010 kcal/molLarson 1923, Vanderzee 1972
24.91148.5 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(298.15 K) = -10.875 ± 0.014 kcal/molSchulz 1966, Vanderzee 1972
9.51148.4 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(298.15 K) = -10.910 ± 0.015 (×1.509) kcal/molLarson 1924, Vanderzee 1972
3.41149.8 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrG°(635 K) = 20.084 ± 0.157 kJ/molSchulz 1966, 3rd Law
1.01149.3 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrG°(686 K) = 6.165 ± 0.068 kcal/molLarson 1923, 3rd Law, est unc
1.01208.1 N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq) ΔrH°(298.15 K) = 141.292 ± 0.119 kcal/molVanderzee 1972c
0.61148.3 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(823 K) = -53.88 ± 0.19 (×1.957) kJ/molWittig 1959
0.61146.7 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(776.15 K) = -12.656 ± 0.089 kcal/molHaber 1915

Top 10 species with enthalpies of formation correlated to the ΔfH° of [NH3]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 AmmoniaNH3 (g)N-38.562-45.554± 0.030kJ/mol17.03056 ±
0.00022
7664-41-7*0
51.7 AmmoniaNH3 (aq, undissoc)N-80.886± 0.053kJ/mol17.03056 ±
0.00022
7664-41-7*1000
49.5 Ammonium[NH4]+ (aq)[NH4+]-133.077± 0.056kJ/mol18.03795 ±
0.00029
14798-03-9*800
47.5 Ammonium hydroxideNH4OH (aq, undissoc)[NH4+].[OH-]-366.715± 0.062kJ/mol35.04584 ±
0.00047
1336-21-6*1000
44.1 Ammonium chloride(NH4)Cl (cr)[NH4+].[Cl-]-311.724-314.886± 0.063kJ/mol53.49120 ±
0.00095
12125-02-9*510
17.4 Aminylium[NH2]+ (g)[NH2+]1266.551264.47± 0.12kJ/mol16.02207 ±
0.00016
15194-15-7*0
17.4 AmidogenNH2 (g)[NH2]188.91186.02± 0.12kJ/mol16.02262 ±
0.00016
13770-40-6*0
16.0 Ammonium bromide(NH4)Br (cr)[NH4+].[Br-]-253.56-270.14± 0.17kJ/mol97.9425 ±
0.0010
12124-97-9*510
14.3 Ammonium[NH4]+ (g)[NH4+]643.05631.74± 0.21kJ/mol18.03795 ±
0.00029
14798-03-9*0
9.0 Ammonium nitrate(NH4)NO3 (cr,l)[NH4+].O=[N+]([O-])[O-]-350.28-365.25± 0.19kJ/mol80.04344 ±
0.00095
6484-52-2*500

Most Influential reactions involving [NH3]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9991139.3 NH3 (g) → [NH3]+ (g) ΔrH°(0 K) = 82158.751 ± 0.032 cm-1Seiler 2003
0.0281309.2 NH2OH (g, trans) → [NH3]+ (g) O (g) ΔrH°(0 K) = 12.70 ± 0.03 eVKutina 1982
0.0011309.1 NH2OH (g, trans) → [NH3]+ (g) O (g) ΔrH°(0 K) = 12.74 ± 0.15 eVGonzalez 1998, est unc
0.0011139.1 NH3 (g) → [NH3]+ (g) ΔrH°(0 K) = 82159 ± 1 cm-1Reiser 1993, Habenicht 1991
0.0001143.8 [NH3]+ (g) → N (g) + 3 H (g) ΔrH°(0 K) = 42.17 ± 1.50 kcal/molRuscic W1RO
0.0001143.7 [NH3]+ (g) → N (g) + 3 H (g) ΔrH°(0 K) = 41.90 ± 1.60 kcal/molRuscic CBS-n
0.0001143.4 [NH3]+ (g) → N (g) + 3 H (g) ΔrH°(0 K) = 41.56 ± 1.60 kcal/molRuscic G4
0.0001143.3 [NH3]+ (g) → N (g) + 3 H (g) ΔrH°(0 K) = 41.98 ± 1.72 kcal/molRuscic G3X
0.0001143.2 [NH3]+ (g) → N (g) + 3 H (g) ΔrH°(0 K) = 42.06 ± 1.84 kcal/molRuscic G3
0.0001143.1 [NH3]+ (g) → N (g) + 3 H (g) ΔrH°(0 K) = 41.99 ± 1.86 kcal/molRuscic G3B3
0.0001143.6 [NH3]+ (g) → N (g) + 3 H (g) ΔrH°(0 K) = 41.53 ± 2.16 kcal/molRuscic CBS-n
0.0001143.5 [NH3]+ (g) → N (g) + 3 H (g) ΔrH°(0 K) = 41.27 ± 2.50 kcal/molRuscic CBS-n
0.0001140.1 NH3 (g) → [NH3]+ (g) ΔrH°(0 K) = 10.182 ± 0.002 (×2.229) eVLocht 1992
0.0001140.3 NH3 (g) → [NH3]+ (g) ΔrH°(0 K) = 10.183 ± 0.005 eVRabalais 1973
0.0001140.2 NH3 (g) → [NH3]+ (g) ΔrH°(0 K) = 10.191 ± 0.010 eVLocht 1991
0.0001141.11 NH3 (g) → [NH3]+ (g) ΔrH°(0 K) = 10.171 ± 0.020 eVDixon 2001, note unc3
0.0001140.6 NH3 (g) → [NH3]+ (g) ΔrH°(0 K) = 10.16 ± 0.02 (×1.325) eVQi 1995
0.0001140.4 NH3 (g) → [NH3]+ (g) ΔrH°(0 K) = 10.160 ± 0.008 (×3.364) eVDibeler 1966
0.0001141.10 NH3 (g) → [NH3]+ (g) ΔrH°(0 K) = 10.184 ± 0.032 eVBoese 2004
0.0001140.5 NH3 (g) → [NH3]+ (g) ΔrH°(0 K) = 10.154 ± 0.010 (×3.292) eVWatanabe 1957a


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122 of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.