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A graph-theoretical study of acyclic polyenes is carried out with an emphasis on the influence of
branching on several molecular properties. A definition of branching is given and several branching
indices are analyzed. The case of polyenes without a Kekulé structure is discussed briefly. The main
conclusions are: (a) thermodynamic stability of conjugated polyenes decreases with branching, but (b)

reactivity, in general, increases with branching.

I. INTRODUCTION

In the present series of papers!'? several topological
properties of conjugated compounds®* have been analyzed
using a graph-theoretical approach® and a number of known
chemical rules could be confirmed and/or justified in
this way. Some other regularities usually regarded as
very general ones are shown to be of restricted validity
(see, e.g., Part VII of this series). Finally, the insight
which graph theory gives into the structural relationships
of the 8-bond network of a conjugated system enables the
formulation and prediction of many previously unknown
phenomena (see especially Parts III and VI), some of
which have since been confirmed experimentally, %’
These topological studies are, however, very complex
because every topological property is determined by a
variety of different structural details of the molecular
graph, which are usually present simultaneously,
Therefore, it is sometimes a rather difficult task to
deduce what is actually the effect of one particular struc-
tural detail on a given topologlcal property. For ex-
ample, it has been demonstrated® that total 7-electron
energy is mainly determined by the number of vertices
and edges. However, since not energies but rather en-
ergy differences are important in chemistry, other topo-
logical factors, which make only small contributions to
the energy, become dominant in determining chemical
behavior. These factors seem to be the ring size (see
Parts IIl and V and Ref. 9), the number of Kekulé struc-
tures (Part X), and branching of the carbon atom skeleton
While the first two of these factors have been now exten-
sively investigated, the effect of the third is almost
completely unknown. The reason for this is, probably,
that almost all polycyclic molecules which have been
studied so far are branched in a similar way so that
this effect has been largely obscured.

In order to investigate the effect of branching on topo-
logical properties, a special class of conjugated sys-
tems has been chosen—the acyclic polyenes. These
compounds have no rings and thus all complicated ring
effects are eliminated; besides if one considers only
acyclic polyenes with a given number N of carbon atoms,
the number of carbon-carbon bonds v is constant (v =N
—1). Moreover, the number of Kekulé structures K is
either one or zero and in practice we are normally in-
terested only in molecules having K=1, Thus in the
case of acyclic polyenes it is possible to keep all topo-
logical factors, except branching, constant. However,
the conclusions obtained in this paper are valid not only
for acyclic polyenes, but for the general polycyclic case
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as well, We hope that the present study gives informa-
tion useful for predicting topological properties of all
conjugated systems,

As an additional reason for the investigation of acyclic
systems we mention the graphical study of heterocyclic
compounds.'® It has been demonstrated!® that the rela-
tive stabilities of isomeric heterocyclic compounds con-
taining 6-bivalent atoms (S O, NH) can be deduced from
the knowledge of the stabilities of the conjugated hydro-
carbons obtained after the deletion of all heteroatoms.
Thus, for instance,!! the stability differences between
I, II, and III parallel the differences between IV, V, and
VI
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il. TREE GRAPHS

In this section we give a short survey of properties of
acyclic graphs which are in graph theory® called “trees.”
Of course, the molecular graph! of an acyclic polyene is
a tree, We also give here the necessary graph-theoret-
ical definitions.

The molecular graph is necessarily connected and
therefore

v=N-1, 1

where N and v denote the number of vertices and edges.
For obvious reasons the case of even N will be con-
sidered only; it is convenient to let n =N/2.

The number of vertices which are adjacent to a vertex
p is called the “degree” of the vertex p and is denoted
by D,. Note that

N
2 D,=2v. 2)
pal
In graphs associated with conjugated systems the follow-
ing inequality always holds!?;

D,< 3. ®
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Let P, S, and T denote the number of vertices having
D, equal to 1, 2, and 3, respectively. Then

P+S+T=N (4)
P+285+3T=2v., (5)
Combining Egs. (1), (4), and (5) one obtains for trees

T=P-2. (6)

The tree with minimal 7 and maximal S values is called
a “chain.” Intuitively, a chain is nonbranched. By in-
creasing the value of T, branching intuitively should in-
crease also. It can be proved that the molecular tree
with maximal 7 and minimal S values which has the
Kekulé graph® is the “combd.” Hence, intuitively, the
comb is the most branched molecular tree with a single
Kekylé graph. Graphs VII and VIII are the chain and the

comb with ten vertices.

0—0O0—0—0—0—0O0—0—0—0—0

L1g C10
P=2, S=N-2,T=0 P=n, $=2,T=n-2
vl vII

However, a more precise definition of branching will be
given in Sec. IV.

Tree graphs are bipartite,!® i,e., the corresponding
hydrocarbons are alternant.

The number of Kekulé graphs K in trees is either one
or zero. Moreover

detA=(-1YK, (1)

where A is the adjacency matrix? of the corresponding
graph.

In chemical studies of unsaturated molecules the spec~
trum of the graph? is of particular importance. We de-
note the set of eigenvalues of A (that is to say the graph
spectrum) by x,x,, ...,x, and adopt the convention

X 2T ... 2K, . (8)
The corresponding eigenvectors are labelled with C,
(¢=1,2, ..., N). Hence

AC,=x,C,. (9)

The graph spectrum is therefore the set of the roots of
the charvacteristic polynomial* P(G,x)

P(G,x)=det (A-x1), (10)

where I is a unit matrix and G denotes the corresponding
graph,

It is well known!? that the eigenvectors and eigen-
values of the molecular graph are closely related to
the Hiickel molecular orbitals and corresponding en-
ergy levels. In this study of particular interest are
C,—the lowest occupied molecular orbital (LOMO),
and, for cases when x,#0, C,—the highest occupied

and C,,, —the lowest unoccupied molecular orbitals
(HOMO and LUMO). The corresponding energies
(including the total energy) will be expressed in § units,

As a consequence’ of Eq. (3)
-3<x, <8 an

for all /. Since trees are bipartite, the graph spectrum
is symmetric,?i.e.,

Xy + Xy =0, (12)

for t=1, 2, ..., n. Because of Eq. (7), x,=%,., =0 if,

and only if K=0. The difference x, — x,,; =2x, has been
called “the HOMO-LUMO spearation”® and will be de-

noted here by A.

The total m-electron energy E, is given by

n
OtN+ﬁZth
t=1

but for the purposes of the present investigation only the
quantity

n
E,=2 )%, 13)
t=1
has to be discussed.

I1l. THE ROLE OF THE KEKULE STRUCTURES

Acyclic polyenes have either one Kekulé structure
(K=1) or have none (K =0). In this latter case the
HOMO-LUMO separation A is zero and is accompanied
by a triplet ground state and extremely high chemical
reactivity. ! In fact, conjugated hydrocarbons without
a Kekulé structure have never been isolated.'® From
Eq. (7) it follows that if a polyene has a Kekulé struc-
ture, the HOMO-LUMO separation is not zero and a
singlet ground state is to be expected. Therefore, for
acyclic polyenes with K =1 Hiickel theory (as well as
various more sophisticated SCF MO theories) predicts®
a polyolefinic chemical behavior. We would summarize
these well known facts as: acyclic polyenes with K=0
are much more reactive (that is kinetically unstable)
than those with K=1.

The dependence of thermodynamic stability on K is
less simple. Some results in this direction derived in
Part X show that structures with X =0 are usually ther-
modynamically less stable than those with K> 0. How-
ever, this is not a general rule, as will be pointed out
later.

In order to obtain some insight into the role whick a
Kekulé structure plays in determining E,, two model
graphs have been investigated—the chain Ly (IX) and the
snake Sy (X).

Ln SN

IX X

The index N denotes the number of vertices (which is
even). Of course, K=1 for the chain and K =0 for the
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snake. Note that total m-electron energy is shown® to
be in a simple linear correlation with the measurable
thermodynamic quantities (heats of formation, enthalpy,
ete. ).

Now, the characteristic polynomial of the chain graph
L, fulfills the recurrence relation?

P(Ly,x)=xP(Ly_y,%) = P(Ly.5,%). (14)
If one introduces

x =2 cosy (15)
it can be shown that

P(Ly,x)=sin(N +1)y/siny . (18)
From (16) it follows immediately that

x,=2 cos[tn/(N+1)], )
for £=1, 2,..., N. The total 7-electron energy is then®

E{Ly)=2 cse[n/2(N+1)]-2. (18)

The characteristic polynomial of the snake graph S,
fulfills the recurrence relation®

P(Sy,x)=x P(Ly.y,x) = x P(Ly_,%) (19)
and if Eqs. (15) and (16) are used,

P(Sy,x)=4 ccsy cos(N-1)y (20)
Therefore the spectrum of S, is

x,=2 cosézT;;—_l—l)—;T, t=1,2,...,n

Xy =0, 21)

x,=2 cos————éz(fv-_sl);r, t=n+2,...,N
and

E(Sy)=2 cot[r/2(N -1)]. (22)
For sufficiently large N,

E,(Ly=@/mN+@4/m) -2 23)

E,(S,)=~@/mN = (4/n) (24)

which means that the snake is less stable than the chain
by approximately 8/7 —2=0.546p3. This destabilization
can be ascribed mainly to the absence of a Kekulé struc-
ture for S,.

The graphs Ly and S, can be viewed as though they
had been obtained by joining an isolated vertex to the
graph L,_, (XI) at the position 1 and 2, respectively,
This leads to the problem of the energy of the graph
B§" (XII) obtained by joining a vertex to the L,_, at the

1 2 r NV 12 r N1

O—O0—800—0—300—0 0—0—-—...—‘1—...—0

{r)
VR By

X1 xn

position . Of course, B{’ =L, and B =S,. This
problem cannot be solved analytically in the general
case and therefore a first order perturbational approach
has been used. Thus,

N/2
2 sivf[rjr/(N+1)]

‘o N+12 cos[jn/(N+1)] °
(25)

E(B{) = E (Ly.)=0E{) =

Because

2 20
sin’y _ sin’(y 2)6 —cos(2r-1)0 +cos(2rv — 3)8 (26)
cosé cosé

the following relation holds:

(=1) (27 = 3)7 (27 - 1)17]
(r) = (r-2)
OEY’ =0E} +2(N+1) [csc 2V 1) +csc—2(N+1)
@7
and for »/N « 1,
SE? =0E{™® + (- 2 -1 (28)

7 (2r-1)@2r-3) -

Since 8E{’ and 6EP are known [see Eq. (18) and (22)],
all other SE{’s can be calculated from Eq. (27). Anal-
ysis shows that for odd # (the case of K=1) 6E{" de-
creases monotonically and rapidly converges to a con-
stant value as » increases. Similarly, for even r (the
case of K=0), 6E{’ increases monotonically and also
converges rapidly. This is illustrated in Fig, 1.

The result of the above discussion and those presented
in Fig. 1 show that total m-electron energy of acyclic
polyenes exhibits a small sensitivity to the position of
the branched atom provided that the number of Kekulé
structures is constant. Branching at the termini of the
chain has the largest effect for both the cases of K=1
and K=0.

From now on we restrict ourselves to polyenes having
K =1 because here we are not interested in effects
caused by the change of K (this latter problem was dis-
cussed in more details in Part X). This restriction will
enable the study of just one topological parameter—the
branching,

26,1 -

FIG. 1. m-electron energy of BSY.
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IV. BRANCHING AND ITS MEASURES

In order to determine what is meant by branching it
is natural to start with the “intuitively obvious” facts
that for some pairs of tree graphs it is possible to de-
cide unambiguously which of them is more branched.

It is our belief that only trees with equal number of ver-
tices can be compared meaningfully. Consequently, the
subsequent discussion will always be restricted to
classes of trees with the same N value.

The least branched tree is, of course, the chain,
while the most branched one would be the “star.” (A
star graph with w +1 vertices has m vertices of degree
one and a vertex of degree m; therefore such graphs
are not important in chemical studies.) Whereas the
statement that the graphs XIIT and XIV are less branched
than the graph XV is completely acceptable, the ques-
tion whether XIII or XIV is more branched necessarily
leads to unproductive academic discussions. This latter
question is, moreover, meaningless, since it requires
a measure for branching which one first needs to define.

o—o——I—o——o O——I—O—O—O 0‘—1—1—0
X1 X1V XV

Let us consider a class of (tree) graphs. For certain
pairs of these graphs one can decide which of them is
more branched. If to every graph G, from the class,
according to a given recipe, a number I'; can be asso-
ciated such that I'; > T, in all cases where one can decide
that G, is more branched than G,, then we call I' a mea-
sure of branching. In particular, for trees which fulfill
the relation (3), that is for chemically relevant tree
graphs, a measure of branching should have the property

I, >T, if T(G,)> T(Gy). (29)

There exist many pairs of similarly branched graphs
for which both T'; > T, and I',> I'; would suffice and it is
clear that the choice of the measure of branching is to a
great extent arbitrary.

Much work has been done in the last twenty years in
an effort to correlate numerous thermodynamical prop-
erties (mainly of saturated hydrocarbons) with some
measure of branching.?*'?* A number of measures (often
called “indices”) has been proposed and usually it was
possible to demonstrate a satisfactory correlation be-
tween the measured quantities and the proposed index.
Instead of defining a new measure, we would like here
just to point out that such measures are all mutually
closely correlated.

In Part III of this series it was shown that the follow-
ing sums appear in a topological formula for total 7 en-

ergy

N
M, =; D? (30)
M,=2_ D, D,, (31)
@)

where 7 ., denotes summation over all edges in the
graph. Recently?* a similar index

Mp= Z (D, D,) '/ (32)
©®,4)

has been proposed for characterization of molecular
branching.

For molecular graphs
M;=9T+4S+P (33)
and if Eqs. (1), (4), and (5) are used
M =4N-6+2T. (34)

Therefore M, will necessarily fulfill the demand (29),
and can be used as a measure of branching., Besides,
since the measure M, is completely determined by N and
T, all molecular graphs with the same number of
branchings (7) turn out to have the same M, values, re-
gardless of other structural details, This seems to be
an advantage because the problem of branching within

a class of trees with fixed N and 7 is automatically
avoided.

Numerical calculations show that the index M, devi-
ates in many cases from the requirements of Eq. (29),
and therefore cannot be used as a measure of branching.
As examples consider the graphs XVI (M, =41, T=2) and

XVII (M, =39, T=3).

XVI XVl

All three indices M,, M,, and My were applied to the
class of all 47 trees with nine and all 106 with ten ver-
tices.® The numerical results obtained show that any
of these indices orders these trees in approximately the
same way., Moreover, there is a linear correlation be-
tween My and M, and a parabolic correlation between
M, and M,. Thus a plot of the 47 My indices for trees
with nine vertices vs the corresponding M, indices can
be correlated by a line of the form Mg~ Mz=0.217
(M, - MD) with a standard deviation of 0.244 in the values
covering the range of My from 14.83 for the chain to
22.63 for the star. The values MY and M{ refer to
these indices for the chain. The slope was nof obtained
by least squares fitting but represents the result of
forcing the line to pass through the points for the chain
and the star. In spite of the rigidity of this approach,
it can be seen that the correlation is fair.

When an additional degree of freedom is added by fit-
ting these same data with a parabola (also constrained
to pass through the points for the chain and the star),
the standard deviation diminishes to 0,163 with a line
of the form My~ MJ3=0.190 (M, - M) +0.00074 (M,

- M. Application of a conventional statistical F test
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indicates that the improvement is significant at better
than the 99% confidence level. However, because of the
smallness of the coefficient of the square term we feel
that it is more useful to think of the correlation as es-
sentially linear,

When the same treatment is applied to the 106 indices
for the graphs with 10 vertices, very similar results
are obtained. Thus the linear equation has a slope of
0.208 and a standard deviation of 0,236 while the para-
bolic equation has coefficients of 0,189 and 0. 00039 with
a standard deviation of 0.162. These results confirm
the conclusion above that the correlation between My
and M, is essentially linear. Although graphs with other
N values have not been tested, we see no reason to be-
lieve that they would behave differently.

The situation is somewhat different with measures M,
and M,. For the trees with nine vertices the linear cor-
relation had a slope of 1.167 and a standard deviation of
5.08. With a parabolic fit the standard deviation was ~
markedly reduced to 1.25 for the line M, — MY =0.451
(M, — M2) +0.0199 (M, ~ M2)?. Here the square term is
significant both statistically and practically. For the
106 graphs with 10 vertices a similar line M, — M}
=0.457 (M, — M2)+0.0140 (M, — M3 and a standard de-
viation of 1,28 were obtained.

Similar correlations also exist between other branch-
ing indices.® In the considerations which follow the
measure M, is used, mainly because of the simplicity
with which it can be evaluated. It should be emphasized
once again that M, is chosen completely arbitrarily.
The statistical analysis described above shows, how-
ever, that closely analogous, if not identical, results
and conclusions would be obtained if some other mea-
sure would be used. Therefore, the choice of this par-
ticular measure is irrelevant for the discussions which
follow. The topological rules discussed in Sec. VI are
highly insensitive to the measure of branching used.

V. THE TWO EXTREME CASES

Before discussing some general regularities of the
dependence of several properties on branching, it is
instructive to compare the two extremely branched mo-
lecular graphs (having K =1)-the nonbranched chain (L,,)
and the maximally branched comb (C,,}). The spectrum
of both graphs can be obtained in a closed analytical
form. Infact, the spectrum of the comb is closely re-
lated to the spectrum of the chain. If the vertices of
Ca, are labeled as indicated in XVII

I_‘I‘_I

N+l n+2

Can

XVII

its adjacency matrix is of the form

AlCyy) = [A(f ) (I)] (35)
from which it follows properly that

P(Cyp,x)=x"P(L,, x - 1/%), (36)
Now, because of Eq. (17),

P(L,,2)= H(z - niﬂl) (362)
it is

n
tm
- 2_1_
= H(x -1-2x cosnTl) (37)
and, therefore, the spectrum of the comb with 2xn ver-
tices is
tw 1/2
x,=cosn+1+(1+coszn+l) , t=1,2,...,n
, (38)
ot 2t \V2 t=1,2,...,n.
Xpey = COS —7 = (1 +cos 1 1)
The total m-electron energy is then
1/2
E, Z (1 +cos2 > (39)
#=1 +1
and for sufficiently large »
E,~2,43212-0.396 (40)
since®
1 r?r 2 N/2 g,
- [0 (1 +cos? H'/2 dt=2.4301 . (41)

These analytical formulas enable the comparison of
properties of the molecular graphs L,, and C,, in the
general case. We will be mainly interested in the fol-
lowing three quantities—position of the LOMO level,
HOMO-LUMO separation, and total r-electron energy.

(a) The two LOMO levels
x1(Ly,) =2 cos[n/(2n +1)] 42)

1/2
21) (43)

are increasing functions of #, but the LOMO of C,, is
always more stable than that of L,, {except, of course,
forrn=1andn=2), i.e.,

%1(Cyp) > x,(Ly,) (44)

for n>2. Moreover, the difference x,(C,,) - x,(L,,) in-
creases with the increase of » showing that one should
expect that, in general, branching will increase the val-
ue of x,.

{(b) The HOMO-LUMO separations are

= L) 2
x,(Cy,) =cos—— + <1 +cos

A(L,,) =4 sin[n/2(2n +1)] (45)
1/2
A(C,,) =2 [(1 + cos%) cos—%] (46)
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A(L,,) is a monotonically decreasing function of », while
A(C,,) is monotonically increasing. For large enough
n (that is for n —«):

A(L)=0 47)
A(C)=2 (V2-1)=0.828. (48)

Therefore, by increasing the number of atoms a linear
polyene becomes more and more reactive. In contrast,
the increase of the size of a “comblike” molecule should
not be accompanied by increasing reactivity.

This completely different behavior of the HOMO-
LUMO separation in the two classes of compounds can
be ascribed to the increase in branching. One may,
thus, expect that branching will in general increase A
and thus that the more branched conjugated molecules
are expected to be less reactive,

(c) Instead of comparing the total m-electron energies
of these two classes of polyenes, it seems to be suffi-
cient to analyze the mean energy e, =E,/N for large N.
Equations (23) and (40) are applicable for this case, and

e,(Ly,) —e,(C,,) = (8/m~2.432)/2=0,05724 , (49)

This result can be understood as meaning that every
branch in Cy introduces a negative contribution to E; of
approximately 0.05724x2~0.18. In Sec, VI this conclu-
sion will be supported by additional numerical examples.

A curious fact that can be demonstrated by comparing
Eqgs. (24) and (40)is that for asufficientlylarge N the 7-
electron energy of a “comblike” polyene should be less than
the energy of the isomeric “snake-like” polyene. This
means that isomeric structures can be designed wheve
the isomer with the larger number of Kekulé structures
is thermodynamically less stable than the isomer with
the smaller K value. The snake S;4 (K=0, E,=21.6)and
the comb C,; (K=1, E,=21.5) are the smallest pair of
molecular graphs having such an “anomalous” property.

3

The final conclusion of this analysis is that “comblike
polyenes should be thermodynamically less stable but
kinetically more stable than their linear isomers.
Thus, these molecules provide examples of conjugated
systems where chemical stability does not parallel
thermodynamical stability and where chemical behavior
and thermodynamical behavior of a compound should be
rigorously distinguished.

V1. RELATIONS BETWEEN SOME GRAPH-SPECTRAL
PROPERTIES AND BRANCHING

In the preceding section the maximally and minimally
branched graphs (with K =1) were studied. It is natural
to expect that the properties of intermediately branched
molecular graphs (with the same N and K values) will be
somehow between these two extremes. Numerical cal-
culations were performed for all possible molecular
trees possessing a Kekulé graph and having N=2,4,6, 8,
and 10 vertices. On Fig. 2 and Fig, 3 are ploted the
values of x; and x, vs T (that is M,). The trend which is
evident from these figures can be summarized as:

Rule 1: The LOMO level is stabilized with increased
branching.

Gutman et al.: Graph theory and molecular orbitals. Xl|
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FIG. 2. The change of the LOMO level with branching.

Rule 2: The HOMO-LUMO separation increases with
increased branching.

Both rules reflect only the general behavior of x; and
X, vs branching, and more or less important deviations
could occur in particular cases. The comparison of
Figs. 2 and 3 shows also that Rule 1 seems to be more
precisely fulfilled, that is, violations from Rule 1 are
much less severe than from Rule 2. With respect to
this it is interesting that in an important mathematical
paper Lovdsz and Pelikin® suggested that x, can be used
as a measure of branching. They were able to prove
that if all the trees with a given number of vertices are
ordered in a sequence according to the increase of their
x, value, the chain will have the first position (minimal
x,) while the star has the end position (maximal x,) in
the sequence. Moreover, the snake graph always has
the second position and the graph XIX next position to
the last.

X1IX

Since both the HOMO and the LOMO levels are in gen-
eral stabilized with branching, it would be intuitively
quite acceptable if the total 7-electron energy—which is
in fact a measure of the mean value of occupied orbital
energies?®*—would also be shifted in the same direction.
This, however, is not the case and leads to

Rule 3: Total m-electron energy (in § units) de-
creases with the increase of branching.

Rule 3 can be shown to be valid in all cases consid-
ered. Infact, for tree graphs with K=1 the equation

E,=E, (Ly)-0.09T (50)

is fulfilled to a high degree of accuracy, the value of the

J. Chem. Phys., Vol. 62, No. 9, 1 May 1975



Gutman et al.: Graph theory and molecular orbitals. XII 3405

Xn ‘ . |
| ' !
[ ] | I [
05+ l | |
i ] ' i
y | | "
- | . !

0.4 | . } . H =
| o | e :
| | . !
i

L | [

0,3 : | o ® i

| | |

N=6 ! N=8 ! N=10 !
i1 | | 1 | | | | L |
R 0 1 2 0t 23 7

FIG. 3. The change of the HOMO level with branching.

energy decrease per branch (0.09=0.1 ) is the mean
value for all branched molecular trees with N=6,8, and
10 vertices. In passing we also note that in the parame-
trization scheme recently proposed by Hess and
Schaad, ? the decrease of E, with branching is included
implicitly.

The behavior of E,, x;, and x, implies that branching
must cause peculiar rearrangements and not only simple
shifts in the MO energy level distribution pattern, and
that the density of distribution of the eigenvalues in the
graph spectrum becomes highly nonuniform. This will
be a matter of further investigation.
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