Selected thermochemical quantities based on version 1.110 of the Core (Argonne) Thermochemical Network

(Unless noted otherwise, all species are in gaseous phase)

Quantity 0 K 298.15 K Uncert. Units Ref. Comment
ΔfH°(C) graphite 0 0 exact     ref. state of element
ΔfH°(C) 711.38 716.87 ± 0.06 kJ mol-1 5 interim value
ΔfH°(C+) 1797.84 1803.44 ± 0.06 kJ mol-1 1 interim value
ΔfH°(C-) 589.61 594.75 ± 0.06 kJ mol-1 1 interim value
IE(C) 11.26029 - ± 0.00001 eV 1  
EA(C) 1.26212 - ± 0.00004 eV 1  
ΔfH°(CO2) -393.108 -393.474 ± 0.014 kJ mol-1 2 unchanged
TAE0(CO2) 1598.18 - ± 0.06 kJ mol-1 1, 6, 8, 9 slightly improved
BDE(OC-O) 526.15 532.18 ± 0.03 kJ mol-1 6 unchanged
ΔfH°(CH4) -66.56 -74.53 ± 0.06 kJ mol-1 1, 2 very slightly changed
TAE0(CH4) 1642.08 - ± 0.08 kJ mol-1 1, 6, 7, 9 slightly improved
ΔfH°(C6H5) 350.6 337.3 ± 0.6 kJ mol-1 5  
TAE0(C6H5) 4997.9 - ± 0.7 kJ mol-1 5  
ΔfH°(C6H5+) 1148.7 1136.8 ± 1.0 kJ mol-1 5  
TAE0(C6H5+) 4199.7 - ± 1.0 kJ mol-1 5  
ΔfH°(C6H5-) 244.9 232.0 ± 0.5 kJ mol-1 5  
TAE0(C6H5-) 5103.6 - ± 0.6 kJ mol-1 5  
IE(C6H5) 8.272 - ± 0.010 eV 5  
EA(C6H5) 1.095 - ± 0.005 eV 5  
ΔfH°(C6H6) 100.7 83.2 ± 0.3 kJ mol-1 5  
TAE0(C6H6) 5463.8 - ± 0.7 kJ mol-1 5  
BDE(C6H5-H) 465.9 472.1 ± 0.6 kJ mol-1 5  
ΔacidG°(C6H6) 1672.3 1641.4 ± 0.4 kJ mol-1 5  
ΔdeprotH°(C6H6) 1672.3 1678.8 ± 0.4 kJ mol-1 5  
AE(C6H5+/C6H6) 13.101 - ± 0.010 eV 5  
ΔfH°(C6H6) liq - 49.2 ± 0.3 kJ mol-1 5  
ΔfH°(C6H6+) 992.6 976.1 ± 0.3 kJ mol-1 1  
TAE0(C6H6+) 4571.9 - ± 0.4 kJ mol-1 1  
IE(C6H6) 9.24373 - ± 0.00004 eV 1  
ΔfH°(C6H5F) -99.7 -115.4 ± 1.0 kJ mol-1 5  
TAE0(C6H5F) 5525.5 - ± 1.1 kJ mol-1 5  
BDE(C6H5-F) 527.5 532.0 ± 1.2 kJ mol-1 5  
AE(C6H5+/C6H5F) 13.740 - ± 0.014 eV 5  
ΔfH°(C6H5F) liq - -150.0 ± 1.0 kJ mol-1 5  
ΔfH°(C6H5Cl) 67.2 52.2 ± 0.6 kJ mol-1 5  
TAE0(C6H5Cl) 5400.9 - ± 0.7 kJ mol-1 5  
BDE(C6H5-Cl) 403.0 406.4 ± 0.8 kJ mol-1 5  
AE(C6H5+/C6H5Cl) 12.449 - ± 0.011 eV 5  
ΔfH°(C6H5Cl) liq - 11.3 ± 0.6 kJ mol-1 5  
ΔfH°(C6H5Br) 127.0 104.9 ± 1.3 kJ mol-1 5  
TAE0(C6H5Br) 5339.4 - ± 1.3 kJ mol-1 5  
BDE(C6H5-Br) 341.5 344.2 ± 1.3 kJ mol-1 5  
AE(C6H5+/C6H5Br) 11.812 - ± 0.012 eV 5  
ΔfH°(C6H5Br) liq - 60.2 ± 1.3 kJ mol-1 5  
ΔfH°(C6H5I) 177.9 161.9 ± 1.0 kJ mol-1 5  
TAE0(C6H5I) 5277.8 - ± 1.1 kJ mol-1 5  
BDE(C6H5-I) 279.9 282.2 ± 1.1 kJ mol-1 5  
AE(C6H5+/C6H5I) 11.173 - ± 0.008 eV 5  
ΔfH°(C6H5I) liq - 113.1 ± 1.1 kJ mol-1 5  
ΔfH°(C6H5NO) 215.6 198.6 ± 1.4 kJ mol-1 5  
TAE0(C6H5NO) 5850.3 - ± 1.5 kJ mol-1 5  
BDE(C6H5-NO) 225.6 229.7 ± 1.4 kJ mol-1 5  
ΔfH°(O) 246.844 249.229 ± 0.002 kJ mol-1 2 unchanged
ΔfH°(O+) 1560.786 1562.644 ± 0.002 kJ mol-1 2 unchanged
ΔfH°(O-) 105.868 108.097 ± 0.002 kJ mol-1 2 unchanged
IE(O) 13.61805 - ± 0.00001 eV 1  
EA(O) 1.46111 - ± 0.00001 eV 1  
ΔfH°(O2) 0 0 exact     ref. state of element
ΔfH°(O2+) 1164.58 1165.22 ± 0.01 kJ mol-1 2 unchanged
ΔfH°(O2-) -43.4 -42.7 ± 0.2 kJ mol-1 1, 2 improved
IE(O2) 12.0701 - ± 0.0001 eV 1  
BDE(O2) 493.688 498.458 ± 0.004 kJ mol-1 6, 8, 9 unchanged
EA(O2) 0.449 - ± 0.002 eV 1  
ΔbaseG°(O2) 417.19 397.71 ± 0.11 kJ mol-1 10 unchanged
PA(O2) 417.19 422.05 ± 0.11 kJ mol-1 10 unchanged
ΔfH°(O3) 144.400 141.746 ± 0.039 kJ mol-1 1, 2 slightly improved
TAE0(O3) 596.131 - ± 0.039 kJ mol-1 6, 9 unchanged
BDE(OO-O) 102.444 107.483 ± 0.039 kJ mol-1 6, 9 unchanged
ΔfH°(H) 216.034 217.998 ± 0.000 kJ mol-1 2 unchanged
ΔfH°(H+) 1528.084 1530.047 ± 0.000 kJ mol-1 2 unchanged
ΔfH°(H-) 143.264 145.228 ± 0.000 kJ mol-1 2 unchanged
ΔfH°(H2) 0 0 exact     ref. state of element
ΔfH°(H2+) 1488.364 1488.479 ± 0.000 kJ mol-1 2 unchanged
ΔbaseG°(H2) 417.780 395.953 ± 0.012 kJ mol-1 10 unchanged
BDE(H2) 432.068 435.996 ± 0.004 kJ mol-1 6, 8, 9 unchanged
PA(H2) 417.780 423.351 ± 0.012 kJ mol-1 10 unchanged
ΔrG°(O2 + H3+ → H2 + HO2+) 0.60 -1.76 ± 0.11 kJ mol-1 10 unchanged
ΔrH°(O2 + H3+ → H2 + HO2+) 0.60 1.30 ± 0.11 kJ mol-1 10 unchanged
ΔfH°(H2O) -238.918 -241.822 ± 0.027 kJ mol-1 1, 4, 2 slightly improved
TAE0(H2O) 917.830 - ± 0.027 kJ mol-1 6, 8, 9 unchanged
BDE(HO-H) 492.215 497.321 ± 0.002 kJ mol-1 1, 8, 4 improved
ΔfH°(H2O) cr, liq -286.296 -285.825 ± 0.027 kJ mol-1 1, 2 slightly improved
ΔfH°(H2O+) 978.484 975.612 ± 0.030 kJ mol-1 1, 2 improved
IE(H2O) 12.6175 - ± 0.0002 eV 1  
ΔfH°(OH) 37.26 37.50 ± 0.03 kJ mol-1 1, 4 improved
BDE(OH) 425.62 429.73 ± 0.03 kJ mol-1 8, 9 unchanged
ΔfH°(H2O2) -129.45 -135.44 ± 0.07 kJ mol-1 1, 4 improved
TAE0(H2O2) 1055.21 - ± 0.07 kJ mol-1 1, 6, 8, 9 very slightly changed
BDE(HO-OH) 203.98 210.45 ± 0.04 kJ mol-1 1, 8, 4 improved
BDE(HOO-H) 360.67 365.71 ± 0.17 kJ mol-1 1, 8, 4 improved
ΔfH°(HO2) 15.18 12.27 ± 0.16 kJ mol-1 1, 4 slightly improved
TAE0(HO2) 694.54 - ± 0.16 kJ mol-1 1, 8 slightly improved
BDE(HO-O) 268.93 274.47 ± 0.16 kJ mol-1 1, 8, 4 improved
BDE(H-OO) 200.854 205.732 ± 0.16 kJ mol-1 1, 8, 4 improved
ΔfH°(HO2+) 1110.90 1108.00 ± 0.10 kJ mol-1 1, 4 improved
ΔfH°(HO2-) -88.84 -91.53 ± 0.38 kJ mol-1 1, 4 slightly improved
IE(HO2) 11.356 - ± 0.002 eV 1  
EA(HO2) 1.078 - ± 0.004 eV 1  
ΔfH°(F) 77.26 79.37 ± 0.06 kJ mol-1 1, 2 improved
ΔfH°(F2) 0 0 exact     ref. state of element
ΔfH°(Cl) 119.621 121.302 ± 0.002 kJ mol-1 2 unchanged
ΔfH°(Cl2) 0 0 exact     ref. state of element
ΔfH°(Br) 117.92 111.85 ± 0.06 kJ mol-1 5 interim value
ΔfH°(Br2) 45.68 30.89 ± 0.11 kJ mol-1 1 interim value
ΔfH°(Br2) cr, liq 0 0 exact     ref. state of element
ΔfH°(I) 107.157 106.757 ± 0.002 kJ mol-1 5 interim value
ΔfH°(I2) 65.497 62.417 ± 0.004 kJ mol-1 1 interim value
ΔfH°(I2) cr 0 0 exact     ref. state of element
ΔfH°(N) 470.57 472.44 ± 0.03 kJ mol-1 5 interim value
ΔfH°(N2) 0 0 exact     ref. state of element
ΔfH°(NO) 90.59 91.09 ± 0.06 kJ mol-1 5, 4  
BDE(NO) 626.83 630.58 ± 0.06 kJ mol-1 5, 8, 9  
ΔfH°(NO2) 36.83 34.02 ± 0.07 kJ mol-1 1, 4 improved
TAE0(NO2) 927.44 - ± 0.06 kJ mol-1 9 unchanged
BDE(ON-O) 300.604 306.301 ± 0.000 kJ mol-1 4, 9  

References
1   B. Ruscic, updated ATcT [2, 3] thermocemical data based on Core (Argonne) Thermochemical Network [2, 4] ver. 1.110 (2010)
2   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner, J. Phys. Chem. A 108, 9979 (2004)
3   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner, J. Phys. Conf. Ser. 16, 561 (2005)
4   B. Ruscic, R. E. Pinzon, M. L. Morton, N. K. Srinivasan, M.-C. Su, J. W. Sutherland, and J. V. Michael, J. Phys. Chem. A 110, 6592 (2006)
5   W. R. Stevens, B. Ruscic, and T. Baer, "The heats of formation of C6H5, C6H5+, and C6H5NO by TPEPICO and Active Thermochemical Tables analysis", J. Phys. Chem. A 114, 13134 (2010)
6   W. Klopper, B. Ruscic, D. P. Tew, F. A. Bischoff, and S. Wolfsegger, Chem. Phys. 356, 14 (2009)
7   J. Aguilera-Iparraguirre, A. D. Boese, W. Klopper, and B. Ruscic, Chem. Phys. 346, 56 (2008)
8   M. E. Harding, J. Vazquez, B. Ruscic, A. K. Wilson, J. Gauss, and J. F. Stanton, J. Chem. Phys. 128, 114111 (2008)
9   A. Karton, E. Rabinovich, J. M. L. Martin, and B. Ruscic, J. Chem. Phys. 125, 144108 (2006)
10   S. L. Widicus Weaver, D. E. Woon, B. Ruscic, and B. J. McCall, Astrophys. J. 697, 601 (2009)

Quantities
ΔfH°(ABC)   enthalpy of formation of ABC; for ions it is given here in the stationary electron convention and can be converted to the thermal electron convention by simply adding 2.5 RT (6.197 kJ/mol at 298.15 K) to the listed value for the cation and subtracting the same amount from the listed value for the anion
TAE0(ABC)   total atomization energy (dissociation energy into uncharged atoms)
BDE(AB-C)   bond dissociation enthalpy for ABC → AB + C (at 0 K a.k.a. bond dissociation energy D0)
ΔrG°(A + B → C + D)   Gibbs energy of reaction A + B → C + D
ΔrH°(A + B → C + D)   enthalpy of reaction A + B → C + D
ΔacidG°(AH)   gas-phase acidity (Gibbs energy of reaction AH → A- + H+)
ΔdeprotH°(AH)   enthalpy of deprotonation (enthalpy of reaction AH → A- + H+)
ΔbaseG°(B)   gas-phase basicity (negative of Gibbs energy of reaction B + H+ → BH+)
PA(B)   proton affinity of B (negative of the enthalpy of reaction B + H+ → BH+)
IE(ABC)   adiabatic ionization energy of ABC
EA(ABC)   adiabatic electron affinity of ABC
AE(AB+/ABC)   appearance energy of AB+ fragment from ABC (a.k.a. dissociative photoionization threshold)

Uncertainties
The listed uncertainties correspond to 95% confidence limits
(Note that in thermochemistry, all quoted uncertainties are supposed to represent best estimates of 95% confidence intervals)